constrained

 $\Delta \rho_{\rm min} = -0.54$ e Å⁻³

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Decamethylferrocenium hexafluorophosphate

Alejandro Sánchez Perucha and Michael Bolte*

Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 21 May 2007; accepted 22 May 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.092; data-to-parameter ratio = 13.8.

The structure of the title compound, $[Fe(C_{10}H_{15})_2]PF_6$, is composed of discrete decamethylferrocenium cations and hexafluorophosphate anions. The Fe and P atoms are located on special positions of site symmetry 2/m, two C atoms and two F atoms are located on a mirror plane, and one F atom is located on a twofold rotation axis. The compound is isostructural with the cobaltocenium complex.

Related literature

For related literature, see: Braga et al. (1999); Heise et al. (2002).

Experimental

Crystal data

5	
$Fe(C_{10}H_{15})_2]PF_6$ $M_r = 471.26$ $Monoclinic, C2/m$ $r = 14.186 (2) Å$ $r = 8.9579 (11) Å$ $r = 8.9902 (13) Å$ $R = 110.277 (13)^{\circ}$	$V = 1071.6 (3) Å^{3}$ Z = 2 Mo K\alpha radiation $\mu = 0.83 \text{ mm}^{-1}$ T = 173 (2) K $0.34 \times 0.32 \times 0.19 \text{ mm}$
Data collection Stoe IPDSII two-circle diffractometer Absorption correction: multi-scan ($MULABS$; Spek, 2003; Blessing, 1995) $T_{min} = 0.765$, $T_{max} = 0.858$	8050 measured reflections 1050 independent reflections 980 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$
Refinement $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.092$ S = 1.11	76 parameters H-atom parameters constrain $\Delta a = 0.36 \text{ e} \text{\AA}^{-3}$

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2302).

References

1050 reflections

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

- Braga, D., Benedi, O., Maini, L. & Grepioni, F. (1999). J. Chem. Soc. Dalton Trans. pp. 2611-2618.
- Heise, H., Köhler, F. H., Herker, M. & Hiller, W. (2002). J. Am. Chem. Soc. 124, 10823-10832.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2007). E63, m1703 [doi:10.1107/S1600536807024919]

Decamethylferrocenium hexafluorophosphate

A. Sánchez Perucha and M. Bolte

Comment

Ferrocenium salts have been extensively studied to better understand the mechanisms of reactions involving ferrocene and ferrocenium-type systems.

The structure of the title compound, $[C_{20}H_{30}Fe]^+[PF_6]^-$, is composed of discrete decamethylferrocenium cations and hexafluorophosphate anions. The Fe and P atoms are located on special positions of site symmetry 2/m, two carbon atoms and two F atoms are located on a mirror plane and one F atom is located on a twofold rotation axis. The title compound is isostructural with the cobaltocenium complex (Braga *et al.*, 1999; Heize *et al.*, 2002).

Experimental

Decamethylferrocenium hexafluorophosphate was synthesized from the reaction between decamethylferrocene and AlCl₃ in refluxing cyclohexane followed by aqueous workup with NH₄PF₆. Single crystals of the title compound were obtained by slow diffusion of diethyether in a concentrated solution of the ferrocenium phosphate in acetone.

Refinement

H atoms were refined with fixed individual displacement parameters $[U_{iso}(H) = 1.5U_{eq}(C)]$ using a riding model with C—H = 0.98 Å. Two methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1. Perspective view of the title compound with the atom numbering scheme; displacement ellipsoids are at the 50% probability level. H atoms are omitted for clarity. Symmetry operators for generating equivalent atoms: (A) -x, -y, -z; (B) -x, y, -z; (C) x, -y, z; (D) 1 - x, y, 1 - z.

Decamethylferrocenium hexafluorophosphate

Crystal data

$[Fe(C_{10}H_{15})_2]PF_6$	$F_{000} = 490$
$M_r = 471.26$	$D_{\rm x} = 1.460 {\rm ~Mg~m^{-3}}$
Monoclinic, <i>C</i> 2/ <i>m</i>	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2y	Cell parameters from 2101 reflections
a = 14.186 (2) Å	$\theta = 4.1 - 25.2^{\circ}$
<i>b</i> = 8.9579 (11) Å	$\mu = 0.83 \text{ mm}^{-1}$
c = 8.9902 (13) Å	T = 173 (2) K
$\beta = 110.277 \ (13)^{\circ}$	Plate, green
V = 1071.6 (3) Å ³	$0.34 \times 0.32 \times 0.19 \text{ mm}$
Z = 2	

Data collection

Stoe IPDSII two-circle diffractometer	1050 independent reflections
Radiation source: fine-focus sealed tube	980 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.030$
T = 173(2) K	$\theta_{\text{max}} = 25.3^{\circ}$
ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995)	$h = -17 \rightarrow 16$
$T_{\min} = 0.765, \ T_{\max} = 0.858$	$k = 0 \rightarrow 10$
8050 measured reflections	$l = 0 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.092$	$w = 1/[\sigma^2(F_o^2) + (0.0564P)^2 + 0.6562P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.11	$(\Delta/\sigma)_{\rm max} < 0.001$
1050 reflections	$\Delta \rho_{max} = 0.36 \text{ e} \text{ Å}^{-3}$
76 parameters	$\Delta \rho_{min} = -0.53 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	v	7.	$U_{\rm iso}^*/U_{\rm eq}$
Fe1	0.0000	0.0000	0.0000	0.0139(2)
C1	0.1113 (2)	0.0000	-0.1024(3)	0.0247(6)
C2	0.12225 (13)	0.1297 (2)	-0.0034(2)	0.0224 (4)
C3	0.14081 (13)	0.0798 (2)	0.1560 (2)	0.0207 (4)
C4	0.0977 (3)	0.0000	-0.2774 (4)	0.0475 (11)
H4A	0.0611	0.0891	-0.3301	0.071*
H4B	0.1666	0.0000	-0.2782	0.071*
C5	0.11647 (17)	0.2895 (3)	-0.0577 (4)	0.0439 (7)
H5A	0.0978	0.3534	0.0162	0.066*
H5B	0.0658	0.2985	-0.1640	0.066*
H5C	0.1820	0.3206	-0.0605	0.066*
C6	0.16194 (17)	0.1773 (3)	0.2996 (3)	0.0410 (6)
H6A	0.1325	0.2762	0.2672	0.061*
H6B	0.2347	0.1870	0.3526	0.061*
H6C	0.1324	0.1323	0.3727	0.061*
P1	0.5000	0.0000	0.5000	0.0218 (3)
F1	0.45456 (15)	0.0000	0.6409 (2)	0.0373 (5)
F2	0.5000	0.1787 (2)	0.5000	0.0512 (6)
F3	0.38896 (16)	0.0000	0.3702 (2)	0.0532 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0142 (3)	0.0147 (3)	0.0126 (3)	0.000	0.0043 (2)	0.000
C1	0.0194 (13)	0.0368 (18)	0.0193 (14)	0.000	0.0084 (11)	0.000
C2	0.0155 (8)	0.0221 (11)	0.0284 (10)	-0.0026 (8)	0.0061 (8)	0.0044 (9)
C3	0.0135 (9)	0.0248 (11)	0.0216 (9)	-0.0017 (8)	0.0035 (7)	-0.0066 (8)
C4	0.0378 (18)	0.088 (3)	0.0218 (15)	0.000	0.0162 (14)	0.000
C5	0.0303 (11)	0.0307 (14)	0.0664 (17)	-0.0022 (10)	0.0114 (11)	0.0206 (13)
C6	0.0292 (11)	0.0513 (17)	0.0370 (12)	-0.0035 (11)	0.0045 (9)	-0.0258 (12)
P1	0.0303 (6)	0.0173 (6)	0.0191 (5)	0.000	0.0101 (4)	0.000
F1	0.0541 (12)	0.0360 (11)	0.0311 (10)	0.000	0.0266 (9)	0.000

supplementary materials

F2 F3	0.0998 (18) 0.0355 (11)	0.0194 (11) 0.0796 (19)	0.0481 (12) 0.0374 (11)	0.000 0.000	0.0430 (12) 0.0037 (9)	0.000 0.000
Geometric paran	neters (Å, °)					
Fe1—C1		2.085 (3)	С3—	C6	1.:	500 (3)
Fe1—C1 ⁱ		2.085 (3)	C4—	H4A	0.9	9798
Fe1—C2 ⁱⁱ		2.0962 (18)	C4—	H4B	0.9	9804
Fe1—C2 ⁱ		2.0962 (18)	С5—	H5A	0.9	9800
Fe1—C2 ⁱⁱⁱ		2.0962 (18)	С5—	H5B	0.9	9800
Fe1—C2		2.0963 (18)	С5—	H5C	0.9	9800
Fe1—C3 ⁱⁱ		2.1275 (18)	С6—	H6A	0.9	9800
Fe1—C3		2.1275 (18)	С6—	H6B	0.9	9800
Fe1—C3 ⁱ		2.1276 (18)	С6—	H6C	0.9	9800
Fe1—C3 ⁱⁱⁱ		2.1276 (18)	P1	F2 ^{iv}	1.0	501 (2)
C1—C2 ⁱⁱ		1.439 (3)	P1—	F2	1.0	501 (2)
C1—C2		1.439 (3)	P1—	F3 ^{iv}	1.0	603 (2)
C1—C4		1.517 (4)	P1	F3	1.0	503 (2)
C2—C3		1.435 (3)	P1—	F1 ^{iv}	1.0	6085 (17)
C2—C5		1.506 (3)	P1—	F1	1.0	5085 (17)
C3—C3 ⁱⁱ		1.430 (4)				
C1—Fe1—C1 ⁱ		180.00 (6)	C2—	C1—C4	12	6.10 (12)
C1—Fe1—C2 ⁱⁱ		40.25 (7)	C2 ⁱⁱ –	-C1-Fe1	70	.29 (12)
C1 ⁱ —Fe1—C2 ⁱⁱ		139.75 (7)	C2—	C1—Fe1	70	.29 (12)
C1—Fe1—C2 ⁱ		139.75 (7)	C4—	C1—Fe1	12	7.9 (2)
C1 ⁱ —Fe1—C2 ⁱ		40.25 (7)	С3—	C2—C1	10	8.03 (18)
C2 ⁱⁱ —Fe1—C2 ⁱ		112.69 (11)	С3—	C2—C5	12	6.2 (2)
C1—Fe1—C2 ⁱⁱⁱ		139.75 (7)	C1—	С2—С5	12	5.8 (2)
C1 ⁱ —Fe1—C2 ⁱⁱⁱ		40.25 (7)	С3—	C2—Fe1	71	.31 (11)
C2 ⁱⁱ —Fe1—C2 ⁱⁱⁱ		180.00 (6)	C1—	C2—Fe1	69	.45 (13)
C2 ⁱ —Fe1—C2 ⁱⁱⁱ		67.30 (11)	С5—	C2—Fe1	12	5.40 (14)
C1—Fe1—C2		40.25 (7)	C3 ⁱⁱ –	-C3-C2	10	8.13 (12)
C1 ⁱ —Fe1—C2		139.75 (7)	C3 ⁱⁱ –	C3C6	12	5.59 (15)
C2 ⁱⁱ —Fe1—C2		67.31 (11)	C2—	C3—C6	12	6.2 (2)
C2 ⁱ —Fe1—C2		180.0	C3 ⁱⁱ –	-C3-Fe1	70	.36 (6)
C2 ⁱⁱⁱ —Fe1—C2		112.69 (11)	C2—	C3—Fe1	68	.96 (10)
C1—Fe1—C3 ⁱⁱ		67.01 (9)	С6—	C3—Fe1	12	8.67 (14)
C1 ⁱ —Fe1—C3 ⁱⁱ		112.99 (9)	C1—	C4—H4A	11	0.9
C2 ⁱⁱ —Fe1—C3 ⁱⁱ		39.72 (8)	C1—	С4—Н4В	10	3.8
C2 ⁱ —Fe1—C3 ⁱⁱ		113.37 (7)	H4A-	—С4—Н4В	11	1.1
C2 ⁱⁱⁱ —Fe1—C3 ⁱⁱ		140.28 (8)	C2—	C5—H5A	10	9.5
C2—Fe1—C3 ⁱⁱ		66.63 (7)	C2—	С5—Н5В	10	9.5

C1—Fe1—C3	67.01 (9)	H5A—C5—H5B	109.5
C1 ⁱ —Fe1—C3	112.99 (9)	C2—C5—H5C	109.5
C2 ⁱⁱ —Fe1—C3	66.63 (7)	H5A—C5—H5C	109.5
C2 ⁱ —Fe1—C3	140.28 (8)	H5B—C5—H5C	109.5
C2 ⁱⁱⁱ —Fe1—C3	113.37 (7)	С3—С6—Н6А	109.5
C2—Fe1—C3	39.72 (8)	С3—С6—Н6В	109.5
C3 ⁱⁱ —Fe1—C3	39.27 (11)	Н6А—С6—Н6В	109.5
C1—Fe1—C3 ⁱ	112.99 (9)	С3—С6—Н6С	109.5
C1 ⁱ —Fe1—C3 ⁱ	67.01 (9)	Н6А—С6—Н6С	109.5
C2 ⁱⁱ —Fe1—C3 ⁱ	113.37 (7)	Н6В—С6—Н6С	109.5
C2 ⁱ —Fe1—C3 ⁱ	39.72 (8)	F2 ^{iv} —P1—F2	179.999 (1)
C2 ⁱⁱⁱ —Fe1—C3 ⁱ	66.63 (7)	F2 ^{iv} —P1—F3 ^{iv}	90.0
C2—Fe1—C3 ⁱ	140.27 (8)	F2—P1—F3 ^{iv}	90.0
C3 ⁱⁱ —Fe1—C3 ⁱ	140.73 (11)	F2 ^{iv} —P1—F3	90.0
C3—Fe1—C3 ⁱ	180.0	F2—P1—F3	90.0
C1—Fe1—C3 ⁱⁱⁱ	112.99 (9)	F3 ^{iv} —P1—F3	180.0
C1 ⁱ —Fe1—C3 ⁱⁱⁱ	67.01 (9)	$F2^{iv}$ — $P1$ — $F1^{iv}$	90.0
C2 ⁱⁱ —Fe1—C3 ⁱⁱⁱ	140.28 (8)	F2—P1—F1 ^{iv}	90.0
C2 ⁱ —Fe1—C3 ⁱⁱⁱ	66.63 (7)	$F3^{iv}$ — $P1$ — $F1^{iv}$	90.73 (11)
C2 ⁱⁱⁱ —Fe1—C3 ⁱⁱⁱ	39.72 (8)	F3—P1—F1 ^{iv}	89.27 (11)
C2—Fe1—C3 ⁱⁱⁱ	113.37 (7)	F2 ^{iv} —P1—F1	90.001 (1)
C3 ⁱⁱ —Fe1—C3 ⁱⁱⁱ	180.0	F2—P1—F1	90.0
C3—Fe1—C3 ⁱⁱⁱ	140.73 (11)	F3 ^{iv} —P1—F1	89.27 (11)
C3 ⁱ —Fe1—C3 ⁱⁱⁱ	39.27 (11)	F3—P1—F1	90.73 (11)
C2 ⁱⁱ —C1—C2	107.7 (2)	F1 ^{iv} —P1—F1	179.999 (1)
C2 ⁱⁱ —C1—C4	126.11 (12)		
C1 ⁱ —Fe1—C1—C2 ⁱⁱ	59.05 (8)	C3—Fe1—C2—C1	118.41 (18)
C2 ⁱ —Fe1—C1—C2 ⁱⁱ	-61.9 (2)	C3 ⁱ —Fe1—C2—C1	-61.59 (18)
C2 ⁱⁱⁱ —Fe1—C1—C2 ⁱⁱ	180.0	C3 ⁱⁱⁱ —Fe1—C2—C1	-98.51 (14)
C2—Fe1—C1—C2 ⁱⁱ	118.1 (2)	C1—Fe1—C2—C5	120.0 (2)
C3 ⁱⁱ —Fe1—C1—C2 ⁱⁱ	37.63 (12)	C1 ⁱ —Fe1—C2—C5	-60.0 (2)
C3—Fe1—C1—C2 ⁱⁱ	80.46 (14)	C2 ⁱⁱ —Fe1—C2—C5	158.17 (18)
C3 ⁱ —Fe1—C1—C2 ⁱⁱ	-99.54 (14)	C2 ⁱ —Fe1—C2—C5	11 (16)
C3 ⁱⁱⁱ —Fe1—C1—C2 ⁱⁱ	-142.36 (12)	C2 ⁱⁱⁱ —Fe1—C2—C5	-21.83 (18)
C1 ⁱ —Fe1—C1—C2	-59.05 (17)	C3 ⁱⁱ —Fe1—C2—C5	-158.5 (2)
C2 ⁱⁱ —Fe1—C1—C2	-118.1 (2)	C3—Fe1—C2—C5	-121.6 (3)
C2 ⁱ —Fe1—C1—C2	180.0	C3 ⁱ —Fe1—C2—C5	58.4 (3)
C2 ⁱⁱⁱ —Fe1—C1—C2	61.9 (2)	C3 ⁱⁱⁱ —Fe1—C2—C5	21.5 (2)
C3 ⁱⁱ —Fe1—C1—C2	-80.46 (14)	C1—C2—C3—C3 ⁱⁱ	-0.34 (17)
C3—Fe1—C1—C2	-37.64 (12)	C5—C2—C3—C3 ⁱⁱ	-179.64 (16)
C3 ⁱ —Fe1—C1—C2	142.36 (12)	Fe1—C2—C3—C3 ⁱⁱ	59.68 (5)

supplementary materials

C3 ⁱⁱⁱ —Fe1—C1—C2	99.54 (14)	C1—C2—C3—C6	176.75 (19)
C1 ⁱ —Fe1—C1—C4	180.00 (7)	C5—C2—C3—C6	-2.6 (3)
C2 ⁱⁱ —Fe1—C1—C4	120.95 (11)	Fe1—C2—C3—C6	-123.23 (19)
C2 ⁱ —Fe1—C1—C4	59.05 (11)	C1—C2—C3—Fe1	-60.02 (15)
C2 ⁱⁱⁱ —Fe1—C1—C4	-59.05 (11)	C5—C2—C3—Fe1	120.7 (2)
C2—Fe1—C1—C4	-120.95 (11)	C1—Fe1—C3—C3 ⁱⁱ	-81.29 (5)
C3 ⁱⁱ —Fe1—C1—C4	158.59 (6)	C1 ⁱ —Fe1—C3—C3 ⁱⁱ	98.71 (5)
C3—Fe1—C1—C4	-158.59 (6)	C2 ⁱⁱ —Fe1—C3—C3 ⁱⁱ	-37.33 (7)
C3 ⁱ —Fe1—C1—C4	21.41 (6)	C2 ⁱ —Fe1—C3—C3 ⁱⁱ	60.58 (11)
C3 ⁱⁱⁱ —Fe1—C1—C4	-21.41 (6)	C2 ⁱⁱⁱ —Fe1—C3—C3 ⁱⁱ	142.67 (7)
C2 ⁱⁱ —C1—C2—C3	0.5 (3)	C2—Fe1—C3—C3 ⁱⁱ	-119.42 (11)
C4—C1—C2—C3	-175.7 (3)	C3 ⁱ —Fe1—C3—C3 ⁱⁱ	-91 (2)
Fe1—C1—C2—C3	61.19 (13)	C3 ⁱⁱⁱ —Fe1—C3—C3 ⁱⁱ	180.0
C2 ⁱⁱ —C1—C2—C5	179.85 (14)	C1—Fe1—C3—C2	38.13 (11)
C4—C1—C2—C5	3.6 (4)	C1 ⁱ —Fe1—C3—C2	-141.87 (11)
Fe1—C1—C2—C5	-119.5 (2)	C2 ⁱⁱ —Fe1—C3—C2	82.09 (16)
C2 ⁱⁱ —C1—C2—Fe1	-60.65 (17)	C2 ⁱ —Fe1—C3—C2	180.0
C4-C1-C2-Fe1	123.1 (3)	C2 ⁱⁱⁱ —Fe1—C3—C2	-97.91 (16)
C1—Fe1—C2—C3	-118.41 (18)	C3 ⁱⁱ —Fe1—C3—C2	119.42 (11)
C1 ⁱ —Fe1—C2—C3	61.59 (18)	C3 ⁱ —Fe1—C3—C2	28 (2)
C2 ⁱⁱ —Fe1—C2—C3	-80.24 (12)	C3 ⁱⁱⁱ —Fe1—C3—C2	-60.58 (11)
C2 ⁱ —Fe1—C2—C3	132 (16)	C1—Fe1—C3—C6	158.3 (2)
C2 ⁱⁱⁱ —Fe1—C2—C3	99.76 (12)	C1 ⁱ —Fe1—C3—C6	-21.7 (2)
C3 ⁱⁱ —Fe1—C2—C3	-36.92 (13)	C2 ⁱⁱ —Fe1—C3—C6	-157.7 (2)
C3 ⁱ —Fe1—C2—C3	180.0	C2 ⁱ —Fe1—C3—C6	-59.8 (3)
C3 ⁱⁱⁱ —Fe1—C2—C3	143.08 (13)	C2 ⁱⁱⁱ —Fe1—C3—C6	22.3 (2)
C1 ⁱ —Fe1—C2—C1	180.0	C2—Fe1—C3—C6	120.2 (3)
C2 ⁱⁱ —Fe1—C2—C1	38.16 (14)	C3 ⁱⁱ —Fe1—C3—C6	-120.4 (2)
C2 ⁱ —Fe1—C2—C1	-109 (16)	C3 ⁱ —Fe1—C3—C6	149 (2)
C2 ⁱⁱⁱ —Fe1—C2—C1	-141.84 (14)	C3 ⁱⁱⁱ —Fe1—C3—C6	59.6 (2)
C3 ⁱⁱ —Fe1—C2—C1	81.49 (14)		

Symmetry codes: (i) -*x*, -*y*, -*z*; (ii) *x*, -*y*, *z*; (iii) -*x*, *y*, -*z*; (iv) -*x*+1, -*y*, -*z*+1.

Fig. 1